Research Articles

Download PDF (2.04 MB)

TOMOGRAPHY, June 2016, Volume 2, Issue 2: 85-93
DOI: 10.18383/j.tom.2016.00130

First 18F-labeled Pentixafor-based Imaging Agent for PET Imaging of CXCR4-expression in Vivo

Andreas Poschenrieder1, Theresa Osl1, Margret Schottelius1, Frauke Hoffmann1, Martina Wirtz1, Markus Schwaiger2, and Hans-Jürgen Wester1

Pharmaceutical Radiochemistry, Technische Universität München, Germany and 2 Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Ismaningerstr, München, Germany

Abstract

In vivo quantification of CXCR4 expression using [68Ga]pentixafor for positron emission tomography (PET) imaging has gained significant clinical interest as CXCR4 plays a fundamental role in oncology and possesses potential prognostic value when overexpressed. To combine the excellent CXCR4-targeting properties of pentixafor-based tracers with the favorable radionuclide properties of 18F for high-resolution PET imaging, we developed an Al18F-labeled 1,4,7-triazacyclononane-triacetic acid (NOTA) analog of pentixather. Al18F-labeling of NOTA-pentixather was performed in aqueous dimethyl sulfoxide (DMSO) at pH = 4 (105°C, 15 minutes). CXCR4 affinities were determined in competitive binding assays, and both biodistribution and small-animal PET studies were performed in Daudi lymphoma-bearing mice. Under non-optimized conditions, [18F]AlF-NOTA-pentixather was obtained in radiochemical yields of 45.5% ± 13.3% and specific activities of up to 24.8 GBq/ µmol. Compared with [natGa]pentixafor, [natF]AlF-NOTA-pentixather showed 1.4-fold higher CXCR4 affinity. [18F]AlF-NOTA-pentixather displayed high and CXCR4-specific in vivo uptake in Daudi xenografts (13.9% ± 0.8% injected dose per gram [ID/g] at 1 hour post injection [p.i.]). Because of its enhanced lipophilicity (logP 1.4), [18F]AlF-NOTA-pentixather showed increased accumulation in the gall bladder and intestines. However, tumor/background ratios of 7.0 ± 1.2, 2.0 ± 0.3, 2.2 ± 0.4, 16.5 ± 6.5, and 29.2 ± 4 for blood, liver, small intestine, gut, and muscle, respectively, allowed for high-contrast visualization of Daudi tumors using PET (1 hour p.i.). The relatively straightforward radiosynthesis and efficient CXCR4 targeting of [18F]AlF-NOTA-pentixather demonstrate the successful implementation of 18F-complexation chemistry and pentixather-based CXCR4 targeting. Upon pharmacokinetic optimization, this class of tracers holds great promise for future application in humans.

PDF

Download the article PDF (2.04 MB)

Download the full issue PDF (76.23 MB)

Mobile-ready Flipbook

View the full issue as a flipbook (Desktop and Mobile-ready)