Research Articles

Download PDF (2.47 MB)

TOMOGRAPHY, December 2016, Volume 2, Issue 4: 341-352
DOI: 10.18383/j.tom.2016.00199

Temporal Feature Extraction from DCE-MRI to Identify Poorly Perfused Subvolumes of Tumors Related to Outcomes of Radiation Therapy in Head and Neck Cancer

Daekeun You1, Madhava Aryal1, Stuart E. Samuels2, Avraham Eisbruch1, and Yue Cao3

1Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; 2Department of Radiation Oncology, University of Miami, Miami, Florida; and 3Department of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan


This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-andneck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting local and regional failure after chemoradiation therapy. Temporal features were extracted from time-intensity curves to build classification model for differentiating voxels with LBV from those with high BV. Support vector machine (SVM) classification was trained on the extracted features for voxel classification. Subvolumes with LBV were then assembled from the classified voxels with LBV. The model was trained and validated on independent datasets created from 456 873 DCE curves. The resultant subvolumes were compared to ones derived by a 2-step method via pharmacokinetic modeling of blood volume, and evaluated for classification accuracy and volumetric similarity by DSC. The proposed model achieved an average voxel-level classification accuracy and DSC of 82% and 0.72, respectively. Also, the model showed tolerance on different acquisition parameters of DCE-MRI. The model could be directly used for outcome prediction and therapy assessment in radiation therapy of HN cancers, or even supporting boost target definition in adaptive clinical trials with further validation. The model is fully automatable, extendable, and scalable to extract temporal features of DCE-MRI in other tumors.


Download the article PDF (2.47 MB)

Download the full issue PDF (200.5 MB)

Mobile-ready Flipbook

View the full issue as a flipbook (Desktop and Mobile-ready)